FURTHER CHARACTERIZATIONS OF FUNCTIONS OF A PAIR OF ORTHOGONAL PROJECTORS

Oskar Maria Baksalary
Faculty of Physics, Adam Mickiewicz University
ul. Umultowska 85, 61-614 Poznań, Poland
e-mail: OBaksalary@gmail.com
AND
Götz Trenkler
Faculty of Statistics, Dortmund University of Technology Vogelpothsweg 87, D-44221 Dortmund, Germany
e-mail: trenkler@statistik.tu-dortmund.de

Abstract

The paper provides several original conditions involving ranks and traces of functions of a pair of orthogonal projectors (i.e., Hermitian idempotent matrices) under which the functions themselves are orthogonal projectors. The results are established by means of a joint decomposition of the two projectors.

Keywords: Hermitian idempotent matrix, partial isometry, rank, trace, Moore-Penrose inverse.
2010 Mathematics Subject Classification: 15B57, 15A09, 15A04, 15A27.

References

[1] J.K. Baksalary, Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, in: Proceedings of the Second International Tampere Conference in Statistics, T. Pukkila, S. Puntanen (Ed(s)), (University of Tampere, Tampere, Finland, 1987) 113-142. doi:10.1016/j.laa.2005.10.038
[2] J.K. Baksalary, O.M. Baksalary and P. Kik, Generalizations of a property of orthogonal projectors, Linear Algebra and its Applications 420 (2007) 1-8.
[3] O.M. Baksalary and G. Trenkler, An alternative approach to characterize the commutativity of orthogonal projectors, Discussiones Mathematicae Probability and Statistics 28 (2008) 113-137.
[4] O.M. Baksalary and G. Trenkler, On angles and distances between subspaces, Linear Algebra and its Applications 431 (2009) 2243-2260.
[5] O.M. Baksalary and G. Trenkler, Revisitation of the product of two orthogonal projectors, Linear Algebra and its Applications 430 (2009) 2813-2833.
[6] O.M. Baksalary and G. Trenkler, On a subspace metric based on matrix rank, Linear Algebra and its Applications 432 (2010) 1475-1491.
[7] O.M. Baksalary and G. Trenkler, On the projectors $\mathbf{F F}^{\dagger}$ and $\mathbf{F}^{\dagger} \mathbf{F}$, Applied Mathematics and Computation 217 (2011) 10213-10223.
[8] J.K. Baksalary, O.M. Baksalary and T. Szulc, A property of orthogonal projectors, Linear Algebra and its Applications 354 (2002) 35-39.
[9] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications (2nd ed.) (Springer-Verlag, New York, 2003).

Appendix

In what follows we provide the representations of the Moore-Penrose inverses of selected functions of orthogonal projectors \mathbf{P} and \mathbf{Q} having the forms (??) and (??), respectively.

$$
\begin{aligned}
& (\mathbf{P Q})^{\dagger}=\mathbf{U}\left(\begin{array}{cc}
\mathbf{P}_{\mathbf{A}} & 0 \\
\mathbf{B}^{*} \mathbf{A}^{\dagger} & \mathbf{0}
\end{array}\right) \mathbf{U}^{*}, \\
& (\mathbf{P}+\mathbf{Q})^{\dagger}=\mathbf{U}\left(\begin{array}{cc}
\mathbf{I}_{r}-\frac{1}{2} \overline{\mathbf{P}}_{\overline{\mathbf{A}}} & -\mathbf{B D}^{\dagger} \\
-\mathbf{D}^{\dagger} \mathbf{B}^{*} & 2 \mathbf{D}^{\dagger}-\mathbf{P}_{\mathbf{D}}
\end{array}\right) \mathbf{U}^{*}, \\
& (\mathbf{P}-\mathbf{Q})^{\dagger}=\mathbf{U}\left(\begin{array}{cc}
\mathbf{P}_{\overline{\mathbf{A}}} & -\mathbf{B D}^{\dagger} \\
-\mathbf{D}^{\dagger} \mathbf{B}^{*} & -\mathbf{P}_{\mathbf{D}}
\end{array}\right) \mathbf{U}^{*}, \\
& (\mathrm{PQP})^{\dagger}=\mathbf{U}\left(\begin{array}{cc}
\mathbf{A}^{\dagger} & 0 \\
0 & 0
\end{array}\right) \mathbf{U}^{*}, \\
& \left(\mathbf{I}_{n}-\mathbf{P Q}\right)^{\dagger}=\mathbf{U}\left(\begin{array}{cc}
\overline{\mathbf{A}} & -\mathbf{B} \\
\mathbf{0} & \mathbf{I}_{n-r}
\end{array}\right) \mathbf{U}^{*}, \\
& (\mathbf{P Q}+\mathbf{Q P})^{\dagger}=\mathbf{U}\left(\begin{array}{cc}
\frac{1}{2} \mathbf{A}^{\dagger}-\frac{1}{2} \mathbf{A}^{\dagger} \mathbf{B}\left(\mathbf{B}^{*} \mathbf{A}^{\dagger} \mathbf{B}\right)^{\dagger} \mathbf{B}^{*} \mathbf{A}^{\dagger} & \mathbf{A}^{\dagger} \mathbf{B}\left(\mathbf{B}^{*} \mathbf{A}^{\dagger} \mathbf{B}\right)^{\dagger} \\
\left(\mathbf{B}^{*} \mathbf{A}^{\dagger} \mathbf{B}\right)^{\dagger} \mathbf{B}^{*} \mathbf{A}^{\dagger} & -2\left(\mathbf{B}^{*} \mathbf{A}^{\dagger} \mathbf{B}\right)^{\dagger}
\end{array}\right) \mathbf{U}^{*}, \\
& (\mathbf{P Q}-\mathbf{Q P})^{\dagger}=\mathbf{U}\left(\begin{array}{cc}
\mathbf{0} & -\left(\mathbf{B}^{*}\right)^{\dagger} \\
\mathbf{B}^{\dagger} & \mathbf{0}
\end{array}\right) \mathbf{U}^{*}, \\
& \left(\mathbf{I}_{n}-\mathbf{P}-\mathbf{Q}\right)^{\dagger}=\mathbf{U}\left(\begin{array}{cc}
-\mathbf{P}_{\mathbf{A}} & -\mathbf{A}^{\dagger} \mathbf{B} \\
-\mathbf{B}^{*} \mathbf{A}^{\dagger} & \mathbf{P}_{\overline{\mathbf{D}}}
\end{array}\right) \mathbf{U}^{*}, \\
& (\mathbf{P}+\mathbf{Q}-\mathbf{P Q})^{\dagger}=\mathbf{U}\left(\begin{array}{cc}
\mathbf{I}_{r} & \mathbf{0} \\
-\mathbf{D}^{\dagger} \mathbf{B}^{*} & \mathbf{D}^{\dagger}
\end{array}\right) \mathbf{U}^{*} .
\end{aligned}
$$

Validity of these representations can be verified by exploiting the four Penrose conditions given in (??). Details on how most of these representations were derived can be found in articles $[3,4]$ and $[6,7]$.

